Purified adult ensheathing glia fail to myelinate axons under culture conditions that enable Schwann cells to form myelin.

نویسندگان

  • Giles W Plant
  • Paul F Currier
  • Ernesto P Cuervo
  • Margaret L Bates
  • Yelena Pressman
  • Mary Bartlett Bunge
  • Patrick M Wood
چکیده

Several studies have suggested that olfactory ensheathing glia (EG) can form Schwann cell (SC)-like myelin. Because of possible misinterpretation attributable to contaminating SCs, the capacity of EG to produce myelin needs to be explored further. Therefore, we compared the abilities of adult EG, purified by immunopanning with p75 antibody, and adult SCs to produce myelin when cocultured with purified dorsal root ganglion neurons (DRGNs) in serum-free and serum-containing media. In both media formulations, the number of myelin sheaths in SC/DRGN cultures was far higher than in EG/DRGN cultures; the number of sheaths in EG/DRGN cultures was equal to that in purified DRGN cultures without added cells. The latter result demonstrates that myelination by a few SCs remaining in purified DRGN cultures may occur, suggesting that myelin in EG/DRGN cultures could be SC myelin. Striking differences in the relationship of EG and SC processes to axons were observed. Whereas SCs displayed relatively short, thick processes that engulfed axons in small bundles or in individual cytoplasmic furrows and segregated larger axons into one-to-one relationships, EG extended flattened sheets that partitioned or only partially encircled fascicles of axons, sometimes spanning the entire culture. SCs exhibited behavior typical of SCs in peripheral nerves, whereas EG exhibited characteristics resembling those of EG in olfactory nerves. In sum, p75-selected EG from adult animals did not exhibit an SC-like relationship to axons and did not form myelin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mouse schwann cells need both NRG1 and cyclic AMP to myelinate.

Genetically modified mice have been a major source of information about the molecular control of Schwann-cell myelin formation, and the role of β-neuregulin 1 (NRG1) in this process in vivo. In vitro, on the other hand, Schwann cells from rats have been used in most analyses of the signaling pathways involved in myelination. To correlate more effectively in vivo and in vitro data, we used purif...

متن کامل

Schwann cell precursors: a favourable cell for myelin repair in the Central Nervous System.

Cell transplant therapies are currently under active consideration for a number of degenerative diseases. In the immune-mediated demyelinating-neurodegenerative disease multiple sclerosis (MS), only the myelin sheaths of the CNS are lost, while Schwann cell myelin of the PNS remains normal. This, and the finding that Schwann cells can myelinate CNS axons, has focussed interest on Schwann cell t...

متن کامل

N-WASP is required for membrane wrapping and myelination by Schwann cells

During peripheral nerve myelination, Schwann cells sort larger axons, ensheath them, and eventually wrap their membrane to form the myelin sheath. These processes involve extensive changes in cell shape, but the exact mechanisms involved are still unknown. Neural Wiskott-Aldrich syndrome protein (N-WASP) integrates various extracellular signals to control actin dynamics and cytoskeletal reorgan...

متن کامل

Non-myelin-forming perisynaptic schwann cells express protein zero and myelin-associated glycoprotein.

Perisynaptic Schwann cells (PSCs) envelop axonal terminals and are physiologically distinct from the nearby myelinating Schwann cells (MSCs), which surround the same innervating motor axons. PSCs have special functions at the neuromuscular synapse, where they detect and can modulate neurotransmitter release. Although PSCs are similar to non-myelinating Schwann cells in that they do not form mul...

متن کامل

The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve.

The use of human Schwann cells (SCs) in transplantation to promote regeneration in central and peripheral neural tissues must be preceded by efforts to define the factors that regulate their functional expression. Adult-derived human SCs can be isolated and purified in culture, but the culture conditions that allow their full differentiation have not yet been defined. We tested the functional c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 14  شماره 

صفحات  -

تاریخ انتشار 2002